From Quasiperiodic Partial Synchronization to Collective Chaos in Populations of Inhibitory Neurons with Delay.
نویسندگان
چکیده
Collective chaos is shown to emerge, via a period-doubling cascade, from quasiperiodic partial synchronization in a population of identical inhibitory neurons with delayed global coupling. This system is thoroughly investigated by means of an exact model of the macroscopic dynamics, valid in the thermodynamic limit. The collective chaotic state is reproduced numerically with a finite population, and persists in the presence of weak heterogeneities. Finally, the relationship of the model's dynamics with fast neuronal oscillations is discussed.
منابع مشابه
Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملEffects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks.
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays ...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملOFFPRINT Collective chaos in pulse-coupled neural networks
We study the dynamics of two symmetrically coupled populations of identical leaky integrate-and-fire neurons characterized by an excitatory coupling. Upon varying the coupling strength, we find symmetry-breaking transitions that lead to the onset of various chimera states as well as to a new regime, where the two populations are characterized by a different degree of synchronization. Symmetric ...
متن کاملF Ur Mathematik in Den Naturwissenschaften Leipzig Synchronized Chaos and Other Coherent States for Two Coupled Neurons Synchronized Chaos and Other Coherent States for Two Coupled Neurons
The parametrized time-discrete dynamics of two recurrently coupled chaotic neurons is investigated. Basic dynamical features of this system are demonstrated for symmetric couplings of identical neurons. Periodic as well as chaotic orbits constrained to a manifold M of synchronized states are observed. Parameter domains for locally stable synchronization manifolds M are determined by numerical s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 116 23 شماره
صفحات -
تاریخ انتشار 2016